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ABSTRACT
Third-party services form an integral part of the mobile
ecosystem: they allow app developers to add features such
as performance analytics and social network integration, and
to monetize their apps by enabling user tracking and tar-
geted ad delivery. At present users, researchers, and regula-
tors all have at best limited understanding of this third-party
ecosystem. In this paper we seek to shrink this gap. Us-
ing data from users of our ICSI Haystack app we gain a rich
view of the mobile ecosystem: we identify and characterize
domains associated with mobile advertising and user track-
ing, thereby taking an important step towards greater trans-
parency. We furthermore outline our steps towards a public
catalog and census of analytics services, their behavior, their
personal data collection processes, and their use across mo-
bile apps.

1. INTRODUCTION
Mobile apps provide services to billions of users world-

wide. These apps often rely on third-party providers for ser-
vices that enhance user experience, such as crash and bug
reporting and social network integration, but also for mone-
tizing their app with user tracking and ad integration.

Third-party services typically collect information about
the user to provide their service. They typically rely on
granted app permissions to collect this information, some
of which may be privacy-sensitive. While mobile platforms
typically enable users to grant or disable permissions for
each app, this model has several shortcomings. First, users
usually remain unaware that by granting permissions to an
app their information might be harvested by third-party ser-
vices. Second, users are not informed of which apps share
the same third-party services, rendering them unaware of
the potentially rich data (spanning a super-set of permissions
across apps) that the third-party services aggregate.

This lack of transparency means that the third-party ser-
vice ecosystem remains fundamentally mysterious to users,
researchers, and regulators—to the extent that we are not
even fully aware of the identities of the major service
providers. Current techniques to explore this ecosystem re-
quire arduous effort and produce only limited understand-

ing. For instance, some techniques require manual supervi-
sion such as static analysis of app source code followed by
manual assessment of embedded libraries. Other approaches
such as network-based trace collection and analysis yield (i)
less than desirable coverage due to on-the-network encryp-
tion and (ii) at-best a fuzzy understanding of the relationship
between traffic flows and the apps that generate them due to
the absence of access to device context.

In this work, we aim to transform our understanding of
the third-party service ecosystem by studying, at scale, how
user-installed apps communicate with it. We leverage the
data provided by the ICSI Haystack, an on-device app that
provides us with rich and deep insight into user traffic and
device operation stemming from real user stimuli, to iden-
tify and characterize third-parties associated with advertis-
ing and tracking services (ATS) at the traffic-level.

The identification and characterization of third-party
tracking services is a fundamental step towards building
mechanisms to improve the transparency of mobile tracking
and to develop methods to protect users from abusive prac-
tices. Our results additionally point to places where targeted
analysis using more traditional techniques, e.g., static and
dynamic analysis in a dedicated testbed, will strengthen our
understanding of the ecosystem.

2. RELATED WORK
The research community has used diverse techniques

to identify advertising and tracking libraries on Android
apps. A large corpus of research characterized the presence
of ad networks across mobile apps by analyzing network
traces [35, 24, 29, 31]. These methods rely on data avail-
able on the payload (e.g., User-Agent field) to associate
flows to apps. However, due to the increasing use of encryp-
tion on mobile apps, these methods may fail to accurately
associate network flows to apps.

Static and dynamic analysis of apps have also had lim-
ited success in identifying the prevalence of advertising and
tracking services. The work by Chen et al. [20] used dy-
namic analysis of Android apps to uncover pervasive leak-
ages of sensitive data and to measure the penetration of li-
braries for advertising and analytics across apps. Other stud-
ies instead leveraged static analysis of app source code to
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identify 190 embedded tracking libraries [32].
Techniques relying on static and dynamic analysis fall

short in terms of scalability and app coverage [30]—i.e., they
rely on Google Play crawlers to obtain the executable and
cannot access pre-installed services. In fact, they may gen-
erate false positives as the presence of a library in an app’s
source-code does not necessarily imply that it actually gets
invoked at runtime.

3. THE ICSI Haystack APP
ICSI Haystack is an Android app, available free via

Google Play [25], that helps mobile users understand how
their mobile apps handle their private information [30], in-
cluding the sensitive data their mobile apps leak and with
whom they share it. Haystack leverages Android’s VPN per-
mission to capture and analyze network traffic locally on the
device, and in user space: it implements a simplified net-
work stack via standard user-level sockets to act as a local
middleware that transparently transmits packets between the
app and the network interface.

Haystack offers a unique vantage point to understand the
mobile ecosystem at scale with real user stimuli. By oper-
ating locally on the device, Haystack can correlate disparate
and rich contextual information, such as app identifiers and
process IDs, with flows; e.g., it can match DNS queries to
outgoing flows and accurately identify the process owning a
given socket.

Haystack analyzes app traffic payload and searches for
personal information that it retrieves from the device sub-
ject to Android’s permissions. Moreover, with user con-
sent, Haystack also performs TLS interception by imple-
menting a local TLS proxy that injects forged certificates on
the flows during TLS session establishment [33]. Examin-
ing user traffic—especially encrypted flows—raises ethical
issues that we consider carefully. We provide further details
about Haystack’s design, goals and performance, in addition
to a discussion of the privacy precautions and ethical stan-
dards Haystack employs, in our technical report [30]. Given
we do not export payload or user identifiers to our database
for analysis, our IRB views our efforts as a non-human sub-
jects research; we analyze the behavior of software, not peo-
ple.

4. CLASSIFYING THIRD-PARTY SER-
VICES

This section presents our method for identifying and clas-
sifying third-party advertising and tracking services (ATS).
We leverage the data provided by 690 Haystack users, sum-
marized in Table 1. It includes 1798 K flows generated by
1,732 apps. We exclude mobile browsers from our analysis
to avoid polluting our dataset with web trackers.

4.1 Identifying third-party services
We identify third-party services by analyzing how mo-

bile apps interact with online services. We create a graph

Users Flows Apps Domains Second-level domains

690 1798 K 1,732 12,206 4,678

Table 1: Summary and scale of our user study.

com.accuweather.android com.accuweather.paid.android

accuweather.com urbanairship.com

com.google.android.wearable.app com.htc.sense.hsp com.nike.plusgps com.starbucks.mobilecard

Figure 1: Communication between 6 mobile apps
(in black) and two online services (in blue): ac-
cuweather.com and urbanairship.com.

with two types of nodes: domains (identified by their DNS
FQDN) and apps (identified by their Google Play ID) 1. We
create an edge between a pair of nodes if we observe a flow
between them. We simplify domains to their second level
using the Mozilla public suffix library [15]. Figure 1 shows
an example interaction between six apps and two domains.
Using the above graph, we label the second-level domains
with a degree greater or equal to two as potential third-party
services.

This approach may result in false positives caused by
first-party domains shared between apps developed by the
same company or app developer. We illustrate an ex-
ample of a false positive in Figure 1. Here, two Ac-
cuweather apps—one free, one paid—communicate with
accuweather.com which could be labeled (incorrectly)
as a third-party service when reached by those apps but not
when used by other weather apps. We avoid such errors
by matching tokens found in the app package name (e.g.,
com.accuweather.android) with the domain names
(e.g., accuweather.com). If a domain and an app have
matching tokens2 we mark the domain as a first-party ser-
vice. By applying these heuristics, we identify 446 domains
as third-party services.

4.2 Identifying ATS domains
The 446 third-party domains that we identify range from

CDNs and news sites to advertising and tracking services. In
our work, we are specifically interested in the latter category;
those that provide advertising and tracking services to app
developers.

Accurately classifying the services provided by each do-
main proves challenging, as demonstrated by the fact that
even popular commercial domain classification systems do
not completely classify all identified third-party domains.
Consider OpenDNS [16], which features a domain classi-
fication service maintained by a user community. It does not
1We differentiate between free and paid versions of the same app.
2We do not consider frequent tokens such as “com”, “android”,
“free” or “paid”.
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Category Keyword Sample

Ad-network “ads”, “interstitial”, “advertising”, “ppi”
Analytics “analytics”, “intelligence”, “bug report”
User Engagement “push notification”, “crm”, “a/b test”

Table 2: Sample of reference keywords used by the ser-
vice classifier.

contain records for 213 of the 446 third-party domains. Even
when such systems provide a classification, it often remains
vague and uninformative. For example, McAffee’s URL cat-
egorization service [27] classifies Crashlytics [7]—a popu-
lar crash-reporting analytics service—simply as “software”.
While manually curated ATS-specific lists such as the ones
provided by AdBlockPlus [21] and hpHost [28] provide bet-
ter accuracy than general-purpose services, our results show
that they are primarily web-centric and often miss mobile-
specific ATS domains.

In order to overcome the incompleteness and inaccu-
racy of current domain classification systems, we propose a
new classifier that extends the insight provided by commer-
cial domain categorization systems with data gathered from
crawling the domains to be classified. The classifier identi-
fies three types of ATS (ad networks, analytics/tracking ser-
vices and services to promote user engagement) by compar-
ing the keywords present on their landing page with a ref-
erence set partially listed in Table 2. We pre-populated the
reference set by crawling the websites of well-known ad net-
works and analytics services (e.g., Google’s AdMob, Google
Analytics, comScore and Yahoo’s Flurry).

In particular, the classifier follows two steps: First, it
uses the McAffee and OpenDNS URL categorization ser-
vices to identify and remove well-known non-ATS domains
such as news sites, email services, and CDNs which are
also absent from the manually curated AdBlockPlus and
hpHost ATS lists. Second, we use our web crawler to an-
alyze the content of the web pages of the remaining domains
and the description provided by top search results from
“<domain>+about” queries on the DuckDuckGo search
engine. Our crawler also checks domains categorized in am-
biguous categories such as Software, Internet, and Business
services by McAffee and OpenDNS. Finally, the crawler an-
alyzes and compares the keywords present on the landing
pages of the domains (when available) with our reference
set. This allows us to infer the services a domain offers.

4.3 Results
Our classifier identifies 280 second-level domains associ-

ated with ATS activity. Table 3 breaks down the 280 services
identified per subcategory. Many of the ATS domains (80 %)
cannot be uniquely categorized into a single category. This
is the case of services like Flurry [10] and Localytics [14]
that offer both analytics and ad services.

Of the 280, only 61 and 205 were reported as ATS services
by the manually curated AdBlockPlus and hpHost ATS lists,
respectively. All of the 61 domains listed by AdBlockPlus

Category (N = 446) # % Example

Non-ATS Domains 166 37
ATS Domains 280 63

Ad Network 177 40 mathtag.com
Analytics 153 34 crashlytics.com
User Engagement 77 17 pushwoosh.com
ATS (ABP) 61 14 baidu.com
ATS (hpHosts) 205 46 ubermedia.com

Table 3: Service classification for all domains identified
as third party services. A third-party service can fall in
multiple ATS categories.

are also included in hpHost list, therefore our classification
method reports 75 previously unreported ATS-related third-
party services.

In order to verify the correctness of our classifier we man-
ually inspect the 75 new domains classified as ATS. We
find that 58 domains were correctly classified as ATS, while
17 are false positives. Our results show that third-party
domains such as measurementapi.com (the Google
Play tracker) and Facebook’s Graph API [23] were cor-
rectly labeled by our classifier and absent from hpHosts
ATS list. We speculate that this is a result of the web-
specific focus of these manually curated lists and the
multi-purpose nature of modern trackers such as Face-
book’s Graph API which state-of-the-art ad-blockers can-
not block at the domain level. On the other hand, the
17 false positives reported by our method include Google
API subdomains (fonts.googleapis.com), A-GPS
services (izatcloud.net) [34], the AVG anti-virus ser-
vice (avg-hrd.appspot.com), and domains associated
with IoT vendors (e.g., netatmo.net) due to the presence
of relevant keywords in their landing pages. In our ongoing
research efforts we are exploring new methods to improve
the accuracy of our classifier.

5. ATS PREVALENCE IN MOBILE APPS
Figure 2 shows the distribution of the number of ATS ser-

vices prevalent in each app. We find that 60% of the apps
monitored by Haystack connect to at least one ATS domain
and 20% of the apps use at least 5 ATS services. The anal-
ysis reveals that users of news and social media apps are
exposed to the largest number of ATS services (Facebook:
106, Twitter: 65) due to web trackers embedded in content
shared via these platforms. More alarmingly, we find that
popular games typically connect to a large number of ATS
services. Given the popularity of general-audience apps—
according to their ESRB rating [8]—among children, it re-
mains unclear if they violate the FTC’s Children’s Online
Privacy Protection Act (COPPA) [6] which requires app de-
velopers to obtain parental consent before collecting chil-
dren’s sensitive information and sharing it with third-party
services.

Figure 3 shows the top 25 third-party ATS domains by
the percentage of apps actively reaching them. We find
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Figure 2: Empirical CDF of the number of ATS domains
per mobile app.
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Figure 3: ATS domains ranked by the percentage of apps
actively using them.

that over 20% of the apps monitored by Haystack connect
to the Crashlytics [7] analytics service and the Facebook
Graph API [23]. Crashlytics’s SDK offers app developers
a wide range of services beyond crash reporting, including
app testing and real-time analytics. The Facebook Graph
API—which also includes graph.instagram.com—is
a unified and comprehensive service that offers app develop-
ers the opportunity to integrate their app on Facebook’s so-
cial network and analytic services as well as cross-platform
ad delivery. An interesting feature of Facebook’s Graph
API is its resilience to blocking by conventional mobile ad-
blocking techniques by an in-path observer: its traffic runs
entirely over TLS and re-uses non-tracking domains of other
Facebook apps. The browser context is a different scenario.
It thus becomes necessary to identify the process generat-
ing the flow to identify its use as a third-party or perform
TLS interception to inspect its purpose on the URL. If not
done carefully, non-tracking Facebook services can also be
disrupted.

Over 10% of the apps we analyze utilize DoubleClick
ad service. Other popular mobile ad-networks are provided
by Amazon, AOL (Millenial Media) and comScore. Some
ATSs specialize in assisting mobile game monetization, as
in the case of Appsflyer [3] and Applifier by Unity3d [2].
App promotion services like Chartboost [5], Liftoff [13] and
TapJoy [17] are a new type of ad-network specializing in
promoting other apps via advertising. They implement a PPI
(pay-per-install) model that allows app developers to mone-
tize their apps by advertising other apps participating in the
network. Promotion services aim to increase app audiences
and, therefore, the number of installs on Google Play. The

ATS Domain ABP hpHosts #Apps #Sites

crashlytics.com False False 434 0
facebook.com False True 406 623
doubleclick.net True True 190 621
gstatic.com False True 172 509
googlesyndication.com False True 160 441
flurry.com True True 133 0
appsflyer.com False True 95 9
google-analytics.com True True 95 664
googletagmanager.com True True 78 200
googleadservices.com True True 72 470

Table 4: Top 10 ATS domains (sorted by app penetra-
tion) with their presence on manually curated ATS lists
and penetration in the Alexa Top 1000 Websites.

number of apps using promotion services is still small com-
pared to traditional ad-networks and analytic services.

The “User Engagement” category groups services offer-
ing a broad range of features to app developers: push noti-
fications mechanisms [19], in-app messages and surveys to
increase user loyalty and obtain user feedback. UrbanAir-
ship [18], jPush [12] and Apptentive [4] are among the most
popular ones. Finally, Gigya [11] allows app developers to
collect and manage customer identities while collecting so-
cial, behavioral, interest and transactional data from them.

5.1 Cross-platform tracking
Cross-platform ATS services have the ability to collect

richer behavioral and contextual information about users.
This poses a higher privacy risk than single platform track-
ers. In order to understand how common cross-platform
tracking is, we also measure ATS presence on a non-mobile
platform: the Web.

In particular, we measure how many mobile ATS domains
are also present in the Alexa Top 1000 websites. Table 4
shows the ten most popular mobile ATS services and the
number of Alexa Top 1000 websites which use their ser-
vices. Across all the ATS domains identified in our analy-
sis, we find that 68.5% are cross-platform and operate on at
least one website in the Alexa Top 1000. We find that two
of the most popular mobile ATS services—Crashlytics and
Flurry— have no presence in the Web. However, Facebook,
DoubleClick, and Google Analytics are present on over 60%
of all the Alexa Top 1000 websites. Additionally, Table 4
shows that manually curated Web-specific ATS lists fail to
identify mobile-only ATS domains such as Crashlytics and
more unpopular services like Adjust and Urbanairship.

5.2 Traffic Overhead of ATS services
Having the ability to identify and label ATS domains al-

lows us to estimate the data volume—which also translates
to battery costs [35]—of mobile tracking. Figure 4 shows
the distribution of the percentage of app traffic flowing to
ATS third-parties. We limit our analysis to the 200 most
data-hungry apps.
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Figure 4: Empirical CDF of the percentage of traffic go-
ing to ATS domains per mobile app.

On average, 17% of app traffic is associated with ATS ser-
vices. If we inspect in detail the distribution, we can see that
70% of the analyzed apps dedicate at least 10% of their traf-
fic to tracking and advertising activities, while more than 7%
of mobile apps have at least 90% of their traffic associated
with ATS activities. If it were not for ATS-related activities,
many mobile apps would operate mostly offline. However,
the results may vary depending on how users interact with
their apps and the nature of the service they provide as for
data-hungry apps like audio/video streaming ones.

6. FUTURE WORK
Dynamic analysis of mobile apps: Thanks to its ability to
capture traffic under real user and network stimuli, Haystack
has effectively revealed interesting interactions between mo-
bile apps and third-party services at the network level. How-
ever, as it focuses primarily on network traffic, Haystack
does not allow us to analyze in depth how apps and libraries
access sensitive resources during runtime [22]. Moreover,
Haystack fails to inspect the payload of network flows when
apps employ techniques against TLS interception [33, 30].
To overcome these limitations, we plan to deploy a purpose-
built testbed to automatize the acquisition of comprehensive
traces both at the network- and system-level.
Privacy leaks: Most apps and third-party ATS services up-
load sensitive user information using HTTPS. However, we
have found instances of highly sensitive information (rang-
ing from unique identifiers like the IMEI to WiFi SSID) be-
ing uploaded by popular apps to 11 ATS services in the clear.
Apps actively uploading user metadata without encryption
expose mobile users to in-path profiling and surveillance.
Additionally, we have also identified app developers track-
ing users without their consent by gathering unique identi-
fiers like the device serial number and MAC address which
are not protected by any Android permission3. We will in-
vestigate and report techniques app developers employ to
profile and track mobile users and instances of severe pri-
vacy leaks.
ATS detection accuracy: Our current method (Section 4.1)
ignores unpopular domains accessed solely by a single app
which translates into false negatives. In our future efforts, we
3The app developer only needs to invoke and parse the information
provided by the undocumented getprop command [1].

will investigate domains present in the long-tail to identify
instances of third-party tracking activity. We also plan to
explore more advanced text-mining techniques to compile a
more comprehensive set of keywords hoping to improve the
scalability and accuracy of our detection method.
Cross-platform tracking: A significant number of ATS ser-
vices offer cross-platform support (Section 5). This feature
gives ATS services the ability to gather richer behavioral and
personal data from users, we plan to investigate how those
services aggregate, link and leverage personal information
from different platforms to build accurate user profiles and
for advertising purposes.
Contextualizing privacy leaks and tracking activity to
regulatory jurisdictions: App developers and ATS do-
mains must comply with a diverse set of rules enforced by
regulatory jurisdictions. However, whether apps correctly
comply with them in the wild is unclear. For example, the
European General Data Protection Regulation controls how
personal data is exported outside the EU [9]. Yet it remains
unclear which organizations are behind each ATS domain
and where they reside geographically. Another interesting
case is the FTC Children’s Online Privacy Protection Act
(COPPA) which aims to protect the privacy of minors when
using commercial websites and mobile apps [6]. Accord-
ing to COPPA rules mobile apps can only collect childrens’
personal information such as unique identifiers (e.g., IMEI),
telephone number or geo-location with parental consent. We
are working to develop methods that would allow us to con-
textualize the results of our app’s behavioral analysis to each
regulatory jurisdiction.

7. CONCLUSIONS
In this paper we presented our ongoing research efforts

to illuminate the mobile ecosystem. Our first step in this
endeavor was identifying the organizations responsible for
user tracking and how mobile apps interact with them by
leveraging the data provided by the ICSI Haystack tool. To
that extent, we implemented a classifier which has allowed
us to identify 58 domains that remained unreported by well-
known tracking and advertising domain lists like AdBlock’s
Easylist and hpHost’s ATS list. The results of our analy-
sis are incorporated to tools and services to promote mobile
transparency and develop techniques to protect mobile user’s
privacy like the ICSI Haystack Panopticon [26] and the ICSI
Haystack Android app itself.
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